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Figure 1: Overview of the street camera-based navigation system. Blind and low-vision (BLV) pedestrians use the smartphone
app (a–c) to interact with the street cameras (d–e) in receiving precise and real-time navigation assistance. The system (a)
localizes the BLV user by asking them to wave one hand, offering them the ability to (b) explore the environment layout, and
then (c) guides the user to their destination while avoiding obstacles and veering off track, and assisting with crossing streets.

ABSTRACT
Blind and low-vision (BLV) people use GPS-based systems for out-
door navigation assistance, which provide turn-by-turn instructions
to get from one place to another. However, such systems do not
provide users with real-time, precise information about their lo-
cation and surroundings which is crucial for safe navigation. In
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this work, we investigate whether street cameras can be used to
address aspects of navigation that BLV people still find challeng-
ing with existing GPS-based assistive technologies. We conducted
formative interviews with six BLV participants to identify spe-
cific challenges they face in outdoor navigation. We discovered
three main challenges: anticipating environment layouts, avoiding
obstacles while following directions, and crossing noisy street inter-
sections. To address these challenges, we are currently developing
a street camera-based navigation system that provides real-time
auditory feedback to help BLV users avoid obstacles, know exactly
when to cross the street, and understand the overall layout of the
environment. We close by discussing our plan for evaluating the
system.

CCS CONCEPTS
• Human-centered computing→ Accessibility systems and
tools.
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1 INTRODUCTION
Outdoor navigation in unfamiliar environments is challenging for
blind and low-vision (BLV) people. GPS-based assistive technolo-
gies, such as BlindSquare [20] and Microsoft Soundscape [13], are
commonly used by BLV people to learn about nearby points of in-
terest (POIs) and to receive turn-by-turn instructions to the chosen
POI. While GPS-based systems successfully provide information
regarding the route to the destination, they fail to assist with other
aspects of outdoor navigation that require real-time and precise
knowledge of the user’s location and surroundings. For instance,
BLV pedestrians face difficulties in avoiding obstacles (e.g., other
pedestrians, vehicles) [24], maintaining a straight path [23], and
crossing street intersections [11]. Thus, there is a need to explore
alternate technologies that can support the precise and real-time
aspects of BLV pedestrian outdoor navigation.

One particularly promising alternative is to leverage already-
instrumented street cameras in outdoor environments, which are
increasingly installed in cities for public safety, surveillance, and
traffic management-related applications [2, 4, 8, 15, 19]. While the
primary purpose of street cameras is not accessibility, they have
the potential to be repurposed as navigation assistance systems.

In this work, we investigate street cameras’ potential for support-
ing aspects of outdoor navigation that require precise and real-time
knowledge of BLV pedestrians’ location and surroundings. To this
end, we take preliminary steps to answer the following research
questions:
RQ1. What aspects of outdoor navigation do BLV people find

challenging when using GPS-based assistive technology?
RQ2. How should street camera-based systems be designed to

address these challenging aspects of outdoor navigation?
RQ3. To what extent do street camera-based navigation systems

address these outdoor navigation challenges?
To answer RQ1, we performed formative interviews with six

BLV participants and found that anticipating environment layouts,
avoiding obstacles while following directions, and crossing street
intersections in noisy environments are challenging aspects of
outdoor navigation that GPS-based systems fail to address.

To answer RQ2, we are currently prototyping a street camera-
based navigation system that addresses the challenges revealed in
RQ1. To interact with the street camera system, BLV pedestrians use
a smartphone application and Bluetooth earpiece. When navigating
outdoors, BLV users simply wave their hand over their head and the
street camera system embedded within the environment recognizes
their precise location on the street using computer vision. Once lo-
calized, pedestrians can choose to receive turn-by-turn instructions
to a nearby POI or explore the layout of the environment. As users

navigate through the environment, they receive real-time auditory
feedback that helps prevent veering off the path, avoid obstacles,
and know exactly when to cross the street; as shown in Figure 1.
Lastly, we close by discussing our plan for evaluating the system
to answer RQ3.

2 RELATEDWORK
Existing approaches for outdoor navigation primarily rely on GPS-
based navigation systems for providing turn-by-turn instructions
and information about nearby POIs [13, 20]. The GPS signal, how-
ever, offers poor precision with localization errors as big as tens of
meters [1, 21, 31]. The accuracy is even lower in densely populated
cities [29], which is even more concerning given that a dispropor-
tionately high percentage of BLV people live in cities [12]. Despite
GPS-based systems’ undeniable impact on helping BLV people in
outdoor navigation, their low precision and inability to provide
real-time support for avoiding obstacles and veering limits their
usability as a standalone navigation solution. Our work attempts to
investigate street cameras’ potential as an alternative solution for
providing precise and real-time navigation assistance along with
turn-by-turn guidance.

Another approach for outdoor navigation has explored devel-
oping personalized, purpose-built, assistive devices support with
crossing streets [11, 17, 28], recording routes [31], and avoiding
obstacles [5, 6, 14, 18, 26, 30]. While these solutions address the
precise and real-time aspects of BLV people’s outdoor navigation,
they do not support turn-by-turn navigation. Furthermore, these
systems place the burden of purchasing costly devices onto the BLV
users. Our work, by contrast, explores the possibility of using street
cameras to provide a comprehensive solution for outdoor naviga-
tion. We investigate re-purposing existing hardware in outdoor
environments to support accessibility applications, thus imbuing
accessibility within the city infrastructure directly, and adding no
additional cost to the BLV user.

3 FORMATIVE INTERVIEWS
We conducted semi-structured interviews with six BLV participants
to answer RQ1:What aspects of outdoor navigation do BLV people
find challenging when using GPS-based assistive technology?

3.1 Methods
We recruited six BLV participants (three males and three females;
aged 29–66) by posting on social media platforms and snowball
sampling [9]. Table 1 summarises the participants’ information. All
interviews were conducted over Zoom and lasted about 90 minutes.
Participants were compensated $25 for this IRB approved study.

To understand the specific aspects of outdoor navigation that
BLV people find challenging, we used a recent Critical Incident
Technique (CIT) [7], in which we asked participants to recall and
describe a recent time when they navigated outdoor environments
using assistive technology (AT). For example, we first asked partici-
pants to name the AT they commonly use and then asked them to
elaborate on their recent experience of using it: “So, you mentioned
using BlindSquare a lot. When was the last time you used it?” Then,
we initiated a discussion by establishing the scenario for them:
“Now, let’s walk through your visit from the office to this restaurant.
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Table 1: Self-reported demographics of our participants. Gender information was collected as a free response; our participants
identified themselves as female (F) or male (M). Participants rated their assistive technology (AT) familiarity on a scale of 1–5.

PID Gender Age Race Occupation Vision ability Onset Mobility aid AT familiarity (1–5)
P1 F 29 White Claims expert Totally blind Birth White cane 3: Moderately familiar
P2 F 61 White Retired Light perception only Age 6 Guide dog 1: Not at all familiar
P3 F 66 White Retired Totally blind Age 58 Guide dog 2: Slightly familiar
P4 M 48 Black Unemployed Light perception only Age 32 White cane 3: Moderately familiar
P5 M 27 White/Asian Unemployed Totally blind Birth White cane 3: Moderately familiar
P6 M 38 White AT instructor Totally blind Birth White cane 5: Extremely familiar

Suppose, I spotted you at your office. What would I observe? Let’s start
with you getting out of your office building.” We asked follow-up
questions to gain insights into what made the aspects of outdoor
navigation challenging and what additional information could help
address them.

To analyze the interviews, we first transcribed the study sessions
in full and then performed thematic analysis [3] involving three
members of our research team. Each researcher first independently
went through the interview transcripts and used NVivo [22] to
create an initial set of codes. Then, all three iterated on the codes
together to identify emerging themes.

3.2 Findings: Challenging Aspects of Outdoor
Navigation

We found three major themes representing aspects of outdoor nav-
igation that participants reported as being challenging.

3.2.1 Anticipating environment layout. Participants expressed lack
of confidence in following GPS-based systems’ instructions due to
difficulties in anticipating the shape and layout of the environment
since “not everything is organized in the ideal grid-like way” (P1).
P3 recalls: “I didn’t know if crosswalks were straight or curved or if
they were angled. [It was hard] to figure out which way you needed
to be to be in the crosswalk.” Many participants cited issues with
unexpected “alleyways” (P1, P2, P4) that caught them off-guard in
dangerous situations with “cars coming through” (P2). Unfamiliar
layouts often caused participants to veer off the sidewalks and end
up in streets.

3.2.2 Avoiding obstacles while following instructions. Participants
reported using their existing mobility aids along with GPS-based
systems for getting directions. While doing so, participants found it
challenging to keep their concentration on identifying obstacles and
often bumped into things that they would have otherwise identified
via their white cane. P2 shared an instance where “there were traffic
cones [and] I tripped over those” while following directions. Both
dynamic obstacles (e.g., other pedestrians, cars) and temporarily
placed stationary obstacles (e.g., triangle sandwich board sign –P3)
were hard to navigate around. P4 echoed this sentiment: “You know
how many times I’ve walked into the sides of cars even though I have
the right of way. Drivers have gotten angry, accusing me of scratching
their vehicles. It can spoil your day [and make] you feel insecure and
disoriented.”

3.2.3 Crossing street intersections safely. In linewith prior research [11],
our participants expressed crossing streets to still be a major chal-
lenge. Most participants mentioned relying on audio cues to identify
the flow of traffic, but found it to be often insufficient: “yeah, it can
be tricky, because [there may be] really loud construction nearby that
can definitely throw me off because I’m trying to listen to the traffic”
(P1). Furthermore, not knowing the duration of the signals and the
length of the crosswalk affected their confidence as they feared
getting in trouble: “I don’t want to be caught in the middle [of the
street]” (P4).

4 STREET CAMERA-BASED NAVIGATION
SYSTEM

In this section, we introduce a navigation system that we are cur-
rently developing to answer RQ2: How should street camera-based
systems be designed to address the challenging aspects of outdoor
navigation? The prototype consists of three components: (i) street
cameras, (ii) computational server, and (iii) smartphone app. Theses
components interact with each other to facilitate two navigation
modes that together address BLV people’s challenges to outdoor
navigation, which we discovered in our formative interviews.

4.1 System Components
Next, we describe the three system components in detail.

Street cameras. The system uses two cameras mounted at the
corner of the second floor (Figure 1d) and twelfth floor of our insti-
tution’s building. Both cameras face the same four-way street inter-
section. The video feed from these cameras are directly streamed
onto the computational server for further processing.

Computational server. The computational server processes the
video feeds using state-of-the-art computer vision models to track
pedestrians and vehicles, and identify pedestrian signals. Using the
two camera views at different heights, along with an image from
Apple Maps’ street view of the same intersection, the system finds
visual correspondences to generate a bird’s-eye view representation
of the environment (Figure 1e). Additionally, it stores the map
information that includes labeled regions (e.g., streets, crosswalks,
sidewalks, pedestrian lights) and the location of relevant POIs (e.g.,
pharmacy, café) within the bird’s-eye view representation. Similar
to prior work in indoor navigation [1, 10, 27], the map information
is preparedmanually by an administrator and loaded onto the server
beforehand.



ASSETS ’23, Oct 22–25, 2023, New York, NY Jain et al.

Smartphone application. Figure 1a–c shows the iOS app that
acts an interface between the user and the computational server,
enabling them to access the map information and to receive real-
time audio feedback via a Bluetooth earpiece. To alleviate concerns
around revealing private identifiable information from the video
feeds (e.g., pedestrian’s faces and vehicle’s license plate), the server
only sends processed information such as navigation instructions,
positions and generic labels of obstacles (e.g., “vehicle” at 2 o’clock)
to the smartphone app instead of the video itself.

4.2 User Interaction and Experience
BLV pedestrians use the smartphone app to establish a connection
with the server via the localization mechanism. Once localized,
users can choose from either of two navigation modes: guidance or
exploration mode.

Localizationmechanism. To determine the user’s position on the
bird’s-eye view map, the system must differentiate them from other
pedestrians in the environment. We achieved this by introducing an
action recognition module that can identify users from the second
floor camera feed. The smartphone app asks the user to initialize
the system with their current position by simply waving one hand
above their head for a few seconds (Figure 1a), which is detected
by the action recognition module. We chose this action based on
discussions with several BLV individuals and most agreed that this
single-handed action was both convenient and socially acceptable
to them. Internally, the action recognitionmodule is implemented as
a CLIP model [25] that computes visual similarity of each detected
pedestrian’s image crops from the second floor camera with the
following language prompts: “person walking” and “person waving
hand.” We experimentally fine-tuned the confidence thresholds.

Navigation modes. To address the challenging aspects of outdoor
navigation that we identified from our formative study, we designed
the street camera-based navigation system to support the following
two modes of navigation:

Guidance Mode. Figure 1c shows this mode, where BLV users
can choose a destination from the list of nearby POIs and receive
real-time audio feedback in the form of turn-by-turn instructions.
Similar to prior work in indoor navigation [1], we represent the
birds-eye view map as a graph representation consisting of POIs
and street corners as nodes that act as way-points. The knowledge
of the user’s precise position enables the system to provide audio
cues that help prevent veering off the path between way-points
(Section 3.2.1).

To address BLV users’ challenges to avoid obstacles while fol-
lowing instructions (Section 3.2.2), the street camera-based system
notifies users of obstacles —both moving and fixed— by specifying
their relative spatial location and detected category (e.g., pedestrian,
vehicle). Our current implementation offers support for dynamic
obstacles such as pedestrians and vehicles, along with fixed ones
such as poles, trashcans, and parked vehicles. Internally, we im-
plement this by tracking all these elements within the space and
predicting positional overlaps in bird’s-eye view. For dynamic ob-
stacles, specifically vehicles, we plan on adapting our prediction
module to also account for their speed.

To address BLV people’s challenges in crossing street intersec-
tions safely (Section 3.2.3), the system dynamically updates the
internal graph representation to temporarily remove crosswalks
that have pedestrian signals reading “wait” and reinstates it when
they read: “walk.‘’ Once the system reinstates the crosswalk, it pro-
vides users precise information about the time remaining to cross
and the distance to the other end of the crosswalk. The system
gathers this information by first automatically detecting the signal
state (i.e., walk vs. wait) and then computing the time it takes to
change over a complete cycle.

Exploration Mode. Figure 1b shows this mode, where BLV users
can choose to navigate the environment without any specific desti-
nation in mind. Similar to guidance mode, this mode also provides
users real-time feedback to prevent veering (Section 3.2.1), avoid
obstacles (Section 3.2.2), and cross street intersections safely (Sec-
tion 3.2.3). Additionally, this mode is designed to address BLV users’
challenge to anticipate environment layouts (Section 3.2.1). The
user can scrub their finger on their smartphone to learn the bird’s-
eye view map spatial layout. Prior work on image accessibility has
found this approach to be effective [16] in exploring images. Our
current implementation allows users to move their finger across the
map on the smartphone app, reading out the corresponding region
labels (e.g., street, crosswalk, sidewalk). We plan on extending this
touchscreen-based exploration tool to also convey user’s current
position and POIs.

5 FUTUREWORK
In addition to extensions mentioned earlier, we are developing our
system’s audio cues for rendering real-time feedback in the two
navigation modes. We plan on conducting pilot studies to identify
and fix any technical issues and to iterate over the system’s design.
To evaluate the street camera-based navigation system (i.e., to an-
swer RQ3) we will conduct user studies with BLV pedestrians. In
this study, we will compare participants’ experience of navigating
street intersections using the proposed system and the GPS apps. In
addition to directly asking participants to share their overall impres-
sions, we plan to analyze participants’ behaviors and system usage
logs. Our aim is to understand the extent to which street cameras
can be used to support precise and real-time outdoor navigation.
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